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Abstract

Firstly, the extended Boussinesq and Cerruti solutions for point forces and point charge acting on the surface of a
transversely isotropic piezoelectric half-space are derived. Secondly, aiming at a series of common three-dimensional

contact including spherical contact, a conical indentor and an upright circular ¯at punch on a transversely isotropic
piezoelectric half-space, we solve for their elastic and electric ®elds in smooth and frictional cases by ®rst evaluating
the displacement functions and then di�erentiating. The displacement functions can be obtained by integrating the

extended Boussinesq or Cerruti solutions in the contact region. Then, when only normal pressure is loaded, the
stresses in the half-space of PZT-4 piezoelectric ceramic are compared in the ®gures with those of the transversely
isotropic material which are assumed to have the same elastic constants as those of PZT-4. Meanwhile, the electric

components in the half-space of PZT-4 piezoelectric ceramic are also shown in the same ®gures. # 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Since Hertz (1882) published his classic article `On the contact of elastic solids', the research on
the contact of elastic materials has been conducted for more than one hundred years, and a lot of
scientists including mathematicians, physicists and civil engineers all contributed to this area.
Earlier research concentrated on isotropic materials, the corresponding methods were e�cient and
the analytic solutions in many cases were obtained. The authors want to mention the method of
complex functions put forward by Muskhelishvili (1953) and integral transform initiated by
Sneddon (1951). These two methods are widely used not only in contact problems but also in
other problems of elastic mechanics, and they are still e�ective for a lot of modern research on
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classic contact problems. In addition, it was Mindlin (1949) who ®rst studied the bonded and slip
contact of isotropic materials and made the research on contact problems more comprehensive.
Gladwell (1980) and Johnson (1985) systematically reviewed the history and literatures of the
contact problems of isotropic elastic materials.

With the development of modern science and technology, many kinds of anisotropic materials
with advantageous characteristics are increasingly used. For example, high-strength roadbeds and
metal surface treating layer, etc., are all anisotropic to a certain degree, so the anisotropic e�ect
must be considered when we study the contact of these kinds of elastic materials. Elliott (1948,
1949) ®rst consider the axisymmetric contact of a rigid sphere, a conical indentor and a cylinder
punch on a transversely isotropic half-space respectively. Shield (1951) considered the contact of an
elliptic ¯at punch. Conway et al. (1967), Conway and Farnham (1967) considered the sliding rigid
sphere acting on a transversely isotropic half-space for stress on the axis of symmetry. Using
Fourier transforms, Willis (1966, 1967) transformed the Hertzian contact problem of anisotropic
materials into evaluating contour integrals and some explicit formulae on the surface of half-space
were presented for transversely isotropic media. Chen (1969) made further research on the plane
contact of anisotropic materials and three-dimensional contact of transversely isotropic materials,
fully considering the stress distribution for indentation and sliding. He brought out that in certain
important practical situations of plane contact the stress functions for the isotropic and anisotropic
materials are of the same form. He also found that the boundary value problem of sphere contact
of transversely isotropic materials is the same as that of isotropic materials and accordingly
obtained the expressions of displacement and stress components in the former case by virtue of the
isotropic result of Hamilton and Goodman (1966). Keer and Mowry (1979) extended Mindlin's
(1949) research on the bonded and slip contact of isotropic materials to the case of transversely
isotropic materials. Lin et al. (1991) considered Hertzian and non-Hertzian contact using the three
potential functions which had been used by Green and Zerna (1954), Pan and Chou (1976). Since
the seventies, Fabrikant (1989, 1991) put forward some new methods in the potential theory and
solved a great variety of mathematical and physical problems. Especially in contact problems, the
solutions of corresponding boundary value problems could be expressed in integral forms and even
be given in the form of elementary functions in some cases. Thereby, complicated transforms are
avoided. By this means, Hanson (1992a, 1992b, 1994) fully studied various kinds of indentors on a
transversely isotropic half-space with the e�ect of sliding friction included, and obtained analytic
expressions for components of displacement and stress in the half-space.

Since the Curie brothers found the piezoelectric e�ect (Mason, 1981) in 1880, due to its characteristic
direct-converse piezoelectric e�ect, the piezoelectric materials are used more and more in manufacturing
various sensors and actuators, and have important applications (Pohanka and Smith, 1988), in such hi-
tech areas as electronics, laser, supersonics, microwave, infrared, navigation, biology, etc. Piezoelectric
ceramic is a kind of transversely isotropic piezoelectric material and has found widespread applications
because of its excellent piezoelectricity. But because of the intrinsic brittleness of piezoelectric ceramic,
the stress concentration, near the contact region and caused by inharmonious contact between the
components of piezoelectric ceramic and the other components, could cause the piezoelectric component
failure. Therefore, it is necessary to make theoretical analysis and accurate quantitative description of
the elastic and electric ®elds for contact of piezoelectric ceramic, from the point of view of mechanical-
electric coupling. Sosa and Castro (1994) obtained the analytic solution for point force and point charge
acting on an orthotropic piezoelectric half-plane through a state space methodology in conjunction with
the Fourier transforms. Wang and Zheng (1995) gave the analytic solution for a concentrated lateral
shear force acting on a transversely isotropic piezoelectric half-space. Ding et al. (1996) gave the
solution of point forces and point charge acting on the boundary of a piezoelectric half-space. All above
solutions were derived using transform methods. Since the ®nal expressions of these solutions are
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relatively tedious and complex, it is of little practical signi®cance. In addition, Fan et al. (1996) studied
the two-dimensional contact on a piezoelectric half-plane by using Stroh's formalism, and gave the
solutions for loads acting on the boundary of an anisotropic piezoelectric half-plane.

In the present paper, the extended Boussinesq and Cerruti solutions for point forces and point charge
acting on the surface of a transversely isotropic piezoelectric half-space are ®rst derived. Secondly,
aiming at a series of three-dimensional contact problems including spherical contact, a conical indentor
and an upright circular ¯at punch on a transversely isotropic piezoelectric half-space, which arise often
in engineering applications, we solve for their elastic and electric ®elds in the smooth and frictional cases
by ®rst evaluating the displacement functions and then di�erentiating. The displacement functions can
be obtained by integrating the extended Boussinesq or Cerruti solutions in the contact region. Finally,
when only a normal pressure is applied, the stresses in the half-space of PZT-4 piezoelectric ceramic are
contrasted in the ®gures with those of the transversely isotropic material which is assumed to have the
same elastic constants as those of PZT-4. Additionally, the electric components in the half-space of
PZT-4 piezoelectric ceramic are also given in the same ®gures.

2. General solution for transversely isotropic piezoelectric media

We introduce Cartesian coordinates Oxyz with the z-axis perpendicular to planes of isotropy. In the
case of characteristic distinct roots, s1$s2$s3$s1, Ding et al. (1996) gave the general solutions for the
displacement and electric potential in terms of four displacement functions for transversely isotropic
piezoelectric media, so that the displacement functions cj satisfy, respectively, the following equations: 

@2

@x2
� @2

@y2
� @2

@z2j

!
cj � 0, � j � 0,1,2,3� �1�

where zj=sjz ( j = 0,1,2,3) and s0 �
��������������
c66=c44
p

,sj � j � 1,2,3� are the three characteristic roots of a sixth
degree equation de®ned in Ding et al. (1996) and satisfy Re(sj ) > 0.

Using the constitutive relation, the general solutions for the stress and the electric displacement
expressed by four displacement functions are obtained. At this point, the coe�cients in front of
derivatives of displacement functions with respect to coordinates are all products or linear combinations
of material constants and characteristic roots. If expressions for the stresses and electric displacements
are substituted into the equilibrium and Gauss equations, some relations among these coe�cients will be
determined through consideration of Eq. (1). With these relations taken into account, the general
solutions for stress and electric displacement can be obtained.

For the sake of convenience, the following notations are introduced:

U � u� iv, w1 � w,w2 � F, s1 � sx � sy

s2 � sx ÿ sy � 2itxy, sz1 � sz, sz2 � Dz

tz1 � txz � ityz, tz2 � Dx � iDy �2�
Then the general solution can be concisely written as follows:

U � D

0@ic0 �
X3
j�1

cj

1A, wm �
X3
j�1

sjkmj

@cj

@zj
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s1 � 2
X3
j�1
�mj ÿ c66�

@2cj

@z2j
, s2 � 2c66D2

0@ic0 �
X3
j�1

cj

1A

szm �
X3
j�1

omj

@2cj

@z2j
, tzm � D

0@s0rmi@c0

@z0
�
X3
j�1

sjomj

@cj

@zj

1A, �m � 1,2� �3�

where kmj are constants dependent on material constants and characteristic roots, and

o1j � c44�1� k1j � � e15k2j,

o2j � e15�1� k1j � ÿ e11k2j

mj � 2c66 ÿ o1js
2
j , r1 � c44, r2 � e15,

D � @=@x� i@=@y, � j � 1,2,3� �4�

3. The solutions for forces and charge acting on a transversely isotropic piezoelectric half-space

Considering a transversely isotropic piezoelectric half-space zr0 with the surface z=0 parallel to the
planes of isotropy, the extended Boussinesq and Cerruti solutions for point forces and point charge
acting on the surface of half-space are ®rst derived. Then, the displacement w on surface, caused by a
hemiellipsoidal normal pressure and electric displacement acting on the surface is given by using the
Superposition principle.

3.1. The extended Boussinesq solution for a normal point force P0 and a point charge Q0 acting on the
surface

When a normal point force P0 and a point charge Q0 act on the coordinate origin, this is an
axisymmetric problem. We can assume the functions c0 and cj in the following form:

c0 � 0, cj � AjlnR
�
j , � j � 1,2,3� �5�

where R�j � Rj � zj,Rj �
��������������
r2 � z2j

q
and r 2=x 2+y 2, Aj are undetermined constants.

Substituting Eq. (5) into Eq. (3), we have

U �
X3
j�1

Ajx

RjR
�
j

� i
X3
j�1

Ajy

RjR
�
j

, wm �
X3
j�1

Ajsjkmj

Rj

s1 � 2c66
X3
j�1

Aj

"
2

RjR
�
j

ÿ x2 � y2

R3
j R
�
j

ÿ x2 � y2

R2
j R
�2
j

#
ÿ 2

X3
j�1

mj
Ajzj
R�j
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s2 � ÿ2c66
X3
j�1

Aj�x2 ÿ y2�
 

1

R3
j R
�
j

� 1

R2
j R
�2
j

!
ÿ i2c66

X3
j�1

Ajxy

 
1

R3
j R
�
j

� 1

R2
j R
�2
j

!

szm � ÿ
X3
j�1

omj
Ajzj

R3
j

,tzm � ÿ
X3
j�1

omj
Ajsjx

R3
j

ÿ i
X3
j�1

omj
Ajsjy

R3
j

�6�

The boundary conditions at z=0 require

tzl � 0, szm � 0, �m � 1,2� �7�
Obviously, both conditions szm=0 are satis®ed automatically. Substituting Eq. (6) into tzl=0, we

have

X3
j�1

sjo1jAj � 0 �8�

Meanwhile, taking into consideration all the equilibrium conditions, apart from those already
satis®ed, for the layer cut from the in®nite piezoelectric half-space by the two planes z= 0 and z=h we
have ��1

ÿ1

��1
ÿ1

szm�x,y,h�dxdy� Pm � 0, �m � 1,2� �9�

where

P1 � P0,P2 � ÿQ0 �10�
Substituting szm of Eq. (6) into Eq. (9), we have

2p
X3
j�1

omjAj � Pm, �m � 1,2� �11�

Combining Eq. (8) and Eq. (11) to determine Aj, we obtain

Aj � djP0 � ljQ0 �12�
where

d1 � �s2o12o23 ÿ s3o13o22�=D1, l1 � o12o13�s2 ÿ s3�=D1

d2 � �s3o13o21 ÿ s1o11o23�=D1, l2 � o11o13�s3 ÿ s1�=D1

d3 � �s1o11o22 ÿ s2o12o21�=D1, l3 � o11o12�s1 ÿ s2�=D1 �13�
and

D1 � 2p

������
s1o11 s2o12 s3o13

o21 o22 o23

o11 o12 o13

������ �14�
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Substituting Eq. (12) into Eq. (8) and Eq. (11), because P0 and Q0 can be arbitrary value, we can get
the following equations:

X3
j�1

sjo1jdj � 0,
X3
j�1

sjo1jlj � 0, 2p
X3
j�1

o1jdj � 1

X3
j�1

o1jlj � 0,
X3
j�1

o2jdj � 0, 2p
X3
j�1

o2jlj � ÿ1 �15�

In order to study the contact problems of piezoelectric materials, the displacement w at a point on the
surface, with a distance of r from the origin, is given as follows.

w �
X3
j�1

Ajsjk1j
Rj

� KP0 � LQ0

r
�16�

where

K �
X3
j�1

sjk1jdj,L �
X3
j�1

sjk1jlj �17�

Eq. (16) shows that the displacement w on the surface is in inverse proportion to r.

3.2. The extended Cerruti solution for tangential point forces Px and Py acting on the surface

When only Px acts on the coordinate origin in the positive x direction, we assume

c0 �
B0y

R�0
, cj

Bjx

R�j
, � j � 1,2,3� �18�

where B0 and Bj are undetermined constants.
Substituting Eq. (18) into Eq. (3), we have

U � ÿB0

 
1

R�0
ÿ y2

R0R
�2
0

!
�
X3
j�1

Bj

 
1

R�j
ÿ x2

RjR
�2
j

!
ÿ i

0@B0
xy

R0R
�2
0

�
X3
j�1

Bj
xy

RjR
�2
j

1A

wm � ÿ
X3
j�1

sjkmjBj
x

RjR
�
j

s1 � ÿ2c66
X3
j�1

Bj

"
4x

RjR
�2
j

ÿ x3 � xy2

R3
j R
�2
j

ÿ 2�x3 � xy2�
R2

j R
�3
j

#
� 2

X3
j�1

mjBj

� xzj

R3
j R
�
j

� x

R2
j R
�
j

�

s2 � 4c66B0

 
x

R0R
�2
0

ÿ xy2

R3
0R
�2
0

ÿ 2xy2

R2
0R
�3
0

!
ÿ 2c66

X3
j�1

Bj

"
2x

RjR
�2
j

ÿ x3 ÿ xy2

R3
j R
�2
j

ÿ 2�x3 ÿ xy2�
R2

j R
�3
j

#
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�i
(
c66B0

"
2y

R0R
�2
0

� y�x2 ÿ y2�
R3

0R
�2
0

� 2y�x2 ÿ y2�
R2

0R
�3
0

#

� 2c66
X3
j�1

Bj

 
ÿ y

RjR
�2
j

� x2y

R3
j R
�2
j

� 2x2y

R2
j R
�3
j

!9=;
szm �

X3
j�1

omjBj

� xzj

R3
j R
�
j

� x

R2
j R
�
j

�

tzm � s0rmB0

 
1

R0R
�
0

ÿ y2z0

R3
0R
�2
0

ÿ 2y2

R2
0R
�2
0

!
ÿ
X3
j�1

sjomjBj

 
1

RjR
�
j

ÿ x2zj

R3
j R
�2
j

ÿ 2x2

R2
j R
�2
j

!

�i
24s0rmB0

 
xyz0

R3
0R
�2
0

� 2xy

R2
0R
�2
0

!
�
X3
j�1

sjomjBj

 
xyzj

R3
j R
�2
j

� 2xy

R2
j R
�2
j

!35 �19�

Substituting Eq. (19) into boundary conditions (7), we have

s0c44B0 �
X3
j�1

sjo1jBj � 0 �20�

X3
j�1

omjBj � 0, �m � 1,2� �21�

Meanwhile, taking into consideration all the equilibrium conditions for the layer cut from the in®nite
piezoelectric half-space by two planes z=0 and z=h, we have��1

ÿ1

��1
ÿ1

tzx�x,y,h�dxdy� Px � 0 �22�

Substituting tzx in Eq. (19) into Eq. (22), we have

s0c44B0 ÿ
X3
j�1

sjo1jBj � ÿPx

p
�23�

Then combining Eq. (20) and Eq. (21) with Eq. (23) to determine Bj, we have

Bj � PxZj, � j � 0,1,2,3� �24�

where

Z0 � ÿ1=�2ps0c44�,

Z1 � �o12o23 ÿ o13o22�=D2
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Z2 � �o13o21 ÿ o11o23�=D2,

Z3 � �o11o22 ÿ o12o21�=D2 �25�
and

D2 � 2p

������
o11 o12 o13

o21 o22 o23

s1o11 s2o12 s3o13

������ �26�

When only Py acts on the coordinate origin in the positive y direction, we can obtain the
displacement functions c0 and cj by means of changing x, y and Px in Eq. (18) into y, ÿx and Py,
respectively. In the same way as above, we can obtain Bj in the same form as Eq. (24) by replacing Px

with Py. Therefore, when Px and Py act simultaneously, the displacement functions c0 and cj are

c0 � Z0

�
Px

y

R�0
ÿ Py

x

R�0

�
, cj � Zj

�
Px

x

R�j
� Py

y

R�j

�
�27�

3.3. The displacement functions for point forces and point charge acting on an arbitrary point on the
surface

When cylindrical coordinates (r, y, z ) is adopted. The point charge Q0 and three point forces Px, Py

and P0 in the positive x, y and z direction act on an arbitrary point M(r0,y0,0) on the surface of a
transversely isotropic piezoelectric half-space.

According to Eq. (5), Eq. (12) and Eq. (27), we obtain the following displacement functions by using
a shift of origin

c0�r,y,z;r0,y0� � iG0�P �Dÿ �PD�w�z0�

cj�r,y,z,r0,y0� � Gj�P �D� �PD�w�zj � � �P0dj �Q0lj �R�j , � j � 0,1,2,3� �28�

where

R�j � Rj � zj,Rj �
������������������������������������������������������������
r2 � r20 ÿ 2rr0cos�yÿ y0� � z2j

q
w�zj � � zjlnR

�
j ÿ Rj,Gj � ÿZj=2 �29�

constants dj and lj are expressed in Eq. (13), Zj is expressed in Eq. (25), P=Px+iPy is a complex shear
force �P and �D are the complex conjugate of P and D, respectively.

3.4. The displacement w on the surface of half-space caused by hemiellipsoidal normal pressure and electric
displacement acting on the surface

Assume there are hemiellipsoidal normal pressure p(x,y ) and electric displacement d(x,y ) acting on
the surface, namely
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p�x,y� � p0

�������������������������������������
1ÿ

�
x

a

�2

ÿ
�
y

b

�2
s

d�x,y� � d0

�������������������������������������
1ÿ

�
x

a

�2

ÿ
�
y

b

�2
s

Within S:
x2

a2
� y2

b2
� 1 �30�

where p0 and d0 are the pressure and electric displacement at the center of the ellipse S, a and b are the
semi-axes of the ellipse, p(x,y ) and d(x,y ) have the same positive direction as the z-axis.

Using superposition principle and Eq. (16), we can obtain the displacement w on the surface as

w�x,y� � K

� �
S

p�x,Z�
r

dxdZ� L

� �
S

d�x,Z�
r

dxdZ �31�

where r �
��������������������������������������
�xÿ x�2 � �Zÿ y�2

q
:

Substituting Eq. (30) into Eq. (31), we have

w � p�Kp0 � Ld0�
a

�
abK�e� ÿ b

a
D�e�x2 ÿ a

b
�K�e� ÿD�e��y2

�
�32�

where e �
���������������������
1ÿ �b=a�2

q
is the eccentricity of the ellipse S, and

K�e� �
�p=2
0

dj�����������������������
1ÿ e2sin2j

p
E�e� �

�p=2
0

�����������������������
1ÿ e2sin2j

q
dj

D�e� � �K�e� ÿ E�e��=e2 �33�
In the case of e=0 (the ellipse reduces to a circle), we have K(0)=E(0)=p/2, D(0)=p/4 and

w � p2�Kp0 � Ld0�
4a

�2a2 ÿ x2 ÿ y2� �34�

4. The contact region and contact loads for contact between a piezoelectric body and another body under
forces and charges

Consider that a body 1 (which may or may not be piezoelectric) and a piezoelectric body 2 touch at
the point O before the forces and charges act on them. Regarding O as the origin, we introduce two
Cartesian coordinates Ox1y1z1 and Ox2y2z2, where the z1 and z2 axes coincide with the common normal
line with their positive directions pointing into body 1 and body 2, respectively. x1, y1 axes and x2, y2
axes are all in the common tangent plane and also in the principal plane of curvature of bodies 1 and 2,
respectively. All the above are shown in Fig. 1.

The surface equations of bodies 1 and 2 may be written as

z1 � F1�x1,y1�, z2 � F2�x2,y2� �35�
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Expanding F1(x1,y1) and F2(x2,y2) into Taylor's series around the origin O and only retaining the
quadratic terms, we have

z1 � �K11x
2
1 � K12y

2
1�=2

z2 � �K21x
2
2 � K22y

2
2�=2 �36�

where K11, K12 and K21, K22 are the principal curvatures of bodies 1 and 2 at the point O, respectively.
Generally, the x1 and x2 axes do not coincide and the angle between them is assumed to be o. We
introduce a common coordinate system Oxyz where z=z2, and assume the angles between the y-axis
and the x1 and x2 axes are o1 and o2 respectively, as shown in Fig. 2. Then, the surface Eq. (36) can be
expressed in the common coordinates x and y by using the coordinate transform formalism.

The distance between M1 and M2, which have the same coordinate (x,y ), could be expressed as
M1M2 � z1 � z2: After diagonalization of the quadratic form for z1+z2, we obtain

z1 � z2 � Ax2 � By2 �37�
where A and B should be calculated as follows:

2A � K11sin2o1 � k12cos2o1 � K21sin2o2 � K22cos2o2

2B � K11cos2o1 � k12sin2o1 � K21cos2o2 � K22sin2o2 �38�
Because z1+z2 is positive, the constants A and B are positive and can be obtained from Eq. (38).
We further consider that body 1 and body 2 are pressed to each other by a pair of forces Pz.

Meanwhile, a pair of charges +Q and ÿQ locate at two points on the common normal line and in body

Fig. 1. Geometry of two piezoelectric bodies touched at the point O.
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1 and body 2, respectively. The forces and charges are distant from the contact point O. Because of
deformation, a contact region forms around the initial contact point O. Obviously, the dimensions of
the contact region, the values of the normal pressure p(x,y ) and electric displacement d(x,y ) inside the
contact region are closely related to the values of Pz and Q. It should be noted that the deformation just
takes place near the contact region, and there is no deformation in the place such as points O1 and O2,
which are distant from the contact point O.

Because of this deformation, points O1 and O2 approach to each other by a certain amount d. This
relative displacement d is a rigid body displacement, so points M1 and M2 also to approach each other
by the same amount. In addition, M1 gets a displacement of ~w1 in the positive z1 direction and M2 gets
a displacement of ~w2 in the positive z2 direction. The distance between M1 and M2 will diminish totally
by dÿ ~w1 ÿ ~w2:

Obviously, if

z1 � z2 � dÿ � ~w1 � ~w2� �39�
then M1 and M2 will contact each other. Otherwise, if

z1 � z2 > dÿ � ~w1 � ~w2� �40�
then M1 and M2 will be still separated and out of the contact region.

Assume that

1. The shape of contact region S is elliptical and its dimensions are su�ciently small compared with
those of the bodies 1 and 2, so we can regard them as two half-spaces;

2. There are no friction and free charge in the contact region and we call such contact `smooth';
In addition, because the dielectric constant, or permittivity, of piezoelectric ceramics is 103 times

Fig. 2. Common coordinate system for the contact of two piezoelectric bodies.
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higher than the environment (e.g. air), we further assume that
3. The normal electric displacement on the surface of bodies 1 and 2 is nonzero only inside the contact

region S. The contact pressure p(x,y ) and electric displacement d(x,y ) inside the contact region
distribute in the form of Eq. (30).

Therefore, when the common tangential plane is parallel to the planes of isotropy, we can obtain ~w1

and ~w2 using Eq. (31), in the form

~w1 � K1

� �
S

p�x,Z�
r

dxdZÿ L1

� �
S

d�x,Z�
r

dxdZ

~w2 � K2

� �
S

p�x,Z�
r

dxdZ� L2

� �
S

d�x,Z�
r

dxdZ �41�

where r=[(xÿx )2+( yÿZ )2]1/2.
For piezoelectric bodies, Kn and Ln can be obtained from Eq. (17) as follows:

Kn �
0@X3

j�1
sjk1jdj

1A
n

, Ln �
0@X3

j�1
sjk1jlj

1A
n

�42�

where subscripts n = 1,2 correspond to bodies 1 and 2; when body 1 is transversely isotropic medium
(the elastic ®eld is uncoupled from electric ®eld), L1=0, and according to Ding et al. (1997), we have

K1 � �s1 � s2�c11
2ps1s2�c11c33 ÿ c213�

�43�

where cij are elastic constants, sk(k = 1,2) are two characteristic roots of a fourth degree equation
de®ned in Hu (1953) and satisfy Re(sk ) > 0; when body 1 is rigid, we take L1=0, K1=0.

Substituting Eq. (37) and Eq. (41) into Eq. (39), we have

d � �Ax2 � By2� � cp
p

� �
S

p�x,Z�
r

dxdZ� cd
p

� �
S

d�x,Z�
r

dxdZ �44�

where

cp � �K1 � K2�p, cd � �L2 ÿ L1�p �45�
Substituting Eq. (30) into Eq. (44), we have

dÿ �Ax2 � By2� � �cpp0 � cdd0�
a

�
abK�e� ÿ b

a
D�e�x2 ÿ a

b
�K�e� ÿD�e��y2

�
�46�

where K(e ) and D(e ) are de®ned in Eq. (33). Comparing the coe�cients on the left of Eq. (46) with
those on the right, we have

d � �cpp0 � cdd0�bK�e� �47�

A � �cpp0 � cdd0� b
a2

D�e� �48�
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B � �cpp0 � cdd0�1
b
�K�e� ÿD�e�� �49�

Because the a, b, d, p0 and d0 are all undetermined, following equilibrium equations are needed.

Pz �
� �

S

p�x,y�dxdy � 2

3
pabp0

Q �
� �

S

d�x,y�dxdy � 2

3
pabd0 �50�

Using Eq. (48) and Eq. (49), we have

A

B
� �1ÿ e2� D�e�

K�e� ÿD�e� �51�

We can obtain e from Eq. (51), and then substituting p0=3Pz/(2pab ) and d0=3Q/(2pab ) into Eq.
(47), Eq. (48) and Eq. (49) to obtain a, b and d as follows:

a � na

�
cpPz � cdQ

S

�1=3

, na �
�
3

p

�
1� B

A

�
D�e�

�1=3

b � nb

�
cpPz � cdQ

S

�1=3

, nb �
�
3

p

�
1� B

A

�
�K�e� ÿD�e��

�������������
1ÿ e2
p �1=3

p0 � npPz

�
S

cpPz � cdQ

�2=3

, d0 � npQ

�
S

cpPz � cdQ

�2=3

, np � 3

2pnanb

d � nd��cpPz � cdQ�2S�1=3, nd � 3

2pna
K�e� �52�

where

S � 2�A� B � � K11 � K12 � K21 � K22 �53�
From the above equations, we can conclude

1. The expressions for na, nb, np and nd are identical to those of classical contact mechanics and can be
obtained if the value of A/B is determined.

2. From Eq. (51), we can see that if e=0, then A/B= 1, and vice versa, so if A=B, the contact region
is circle.

3. If Q= 0, Pz$0, then d0=0, therefore there is no normal electric displacement in the contact region.
If Pz=0, Q $ 0, then p0=0, therefore there is no normal pressure in the contact region and the
deformation arises only from reverse-piezoelectric e�ect.

Obviously, the contact region for the contact between two spheres is circular, If we assume the radii
of the two spheres are r1 and r2, then K11=K12=1/r1, K21=K22=1/r2, using Eq. (38) and Eq. (53), we
have
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A � B � 1

2

�
1

r1
� 1

r2

�
, S � 2

�
1

r1
� 1

r2

�
�54�

Substitution of Eq. (54) into Eq. (52) leads to

a � 0:9086

�
�cpPz � cdQ� r1r2

r1 � r2

�1=3
, p0 � 0:5784Pz

�
1

cpPz � cdQ

r1 � r2
r1r2

�2=3

d0 � 0:5784Q

�
1

cpPz � cdQ

r1 � r2
r1r2

�2=3
, d � 0:8255

�
�cpPz � cdQ�2 r1 � r2

r1r2

�1=3
�55�

where the numerical coe�cients are obtained by calculating the na, nb, np and nd in Eq. (52).
When a sphere with radius of r1 contacts with a spherical concave surface with radius of r2 (r2 > r1),

we can obtain a, p0, d0 and d by means of substituting r2 in Eq. (55) for ÿr2. In addition, when r241,
the surface of body 2 is a plane.

When two cylinders with the same radius r orthogonally contact with each other, the contact region is
also circular since K11=K21=1/r, K12=K22=0 and o=p/2, so that with using of Eq. (38) and Eq. (53),
we have

A � B � 1=�2r�, S � 2=r �56�
Substituting Eq. (56) into Eq. (52), we have

a � 0:9086��cpPz � cdQ�r�1=3,

p0 � 0:5784Pz

�
1

�cpPz � cdQ�r
�2=3

d0 � 0:5784Q

�
1

�cpPz � cdQ�r
�2=3

,

d � 0:8255

�
�cpPz � cdQ�2

r

�1=3
�57�

The a, p0, d0 and d in Eq. (57) are same as those for the contact between a sphere with radius r and
piezoelectric half-space.

Suppose that there is a PZT-4 piezoelectric half-space subjected to the action of a rigid sphere, a
transversely isotropic sphere (assumed to have the same elastic constants as those of PZT-4) and a PZT-

Table 1

Material constants of PZT-4 and PZT-5H

Type of material Elastic constants (1010Nmÿ2) Piezoelectric constants (Cmÿ2) Dielectric constants (1010CVÿ1mÿ1

c11 c12 c13 c33 c44 e31 e33 e15 e11 e33
PZT-4 12.6 7.78 7.43 11.5 2.56 ÿ5.2 15.1 12.7 64.9 56.2

PZT-5H 12.6 5.5 5.3 11.7 3.53 ÿ6.5 23.3 17.0 151. 130.
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5H sphere, respectively. The material constants of PZT-4 and PZT-5H are shown in Table 1. Based on
the equations above, the values of contact parameter cp and cd in the above three cases are calculated
and listed in Table 2 for comparison.

Based on these equations above, we could get the dimensions of the contact region, the values of the
normal pressure p(x,y ) and the normal electric displacement d(x,y ) inside the contact region. In the next
section, the corresponding elastic and electric ®elds in the piezoelectric sphere will be obtained by ®rst
evaluating the displacement functions and then di�erentiating. The displacement functions can be
obtained by integrating the extended Boussinesq or Cerruti solutions in the contact region.

5. The elastic and electric ®elds for smooth contact between a piezoelectric sphere and another sphere under
forces and charges

After getting the contact parameters in Section 4, we can now further solve the elastic and electric
®elds in the piezoelectric sphere.

5.1. Analytic solution

The contact stress and electric displacement inside the contact region are assumed as

sz�r,y� � ÿ 3Pz

2pa3
��������������
a2 ÿ r2
p

, Dz�r,y� � 3Q

2pa3
��������������
a2 ÿ r2
p

, 0RrRa �58�

where the contact radius a is determined by Eq. (55),
Substituting P0=ÿsz(r0,y0)r0dr0dy0 and Q0=Dz(r0,y0)r0dr0dy0 into Eq. (28) and integrating the result

over 0R r0 R a, 0R y0 R 2p, the displacement functions become

c0�r,y,z� � 0

cj�r,y,z� �
3�Pzdj �Qlj �

2pa3
P�r,y,zj �, � j � 1,2,3� �59�

where

P�r,y,zj � �
�2p
0

�a
0

��������������
a2 ÿ r20

q
lnR�j r0dr0dy0 �60�

The integral has been evaluated by Fabrikant (1988) with the result

Table 2

Contact parameter cp and cd

Type of sphere cp (N
ÿ1m2) cd (C

ÿ1m2)

Rigid sphere 9.1230� 10ÿ12 ÿ1.1100� 10ÿ2

Transversely isotropic sphere 5.0476� 10ÿ11 ÿ1.1100� 10ÿ2

PZT-5H sphere 1.7156� 10ÿ11 ÿ4.7126� 10ÿ3
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P�r,y,zj � � p
2

(
zj

�
2a2 ÿ r2 � 2

3
z2j

�
sinÿ1

�
l1j�a�
r

�
� 1

3

�
5r2 ÿ 10

3
a2 ÿ 2l22j�a� ÿ

11

3
l 21j�a�

�
� 1

3

�
5r2

ÿ 10

3
a2 ÿ 2l 22j�a� ÿ

11

3
l21j�a�

� ���������������������
a2 ÿ l21j�a�

q
� 4

3
a3ln

�
l2j�a� �

��������������������
l22j�a� ÿ r2

q �)
�61�

where

l1j�a� � 1

2

� ��������������������������
�r� a�2 � z2j

q
ÿ

��������������������������
�rÿ a�2 � z2j

q �

l2j�a� � 1

2

� ��������������������������
�r� a�2 � z2j

q
�

��������������������������
�rÿ a�2 � z2j

q �
�62�

Substituting Eq. (59) into Eq. (3), we obtain the elastic and electric ®elds as follows:

U � 3

2a3
reiy

X3
j�1
�Pzdj �Qlj �

�
ÿ zjsinÿ1

�
l1j�a�
r

�

�
���������������������
a2 ÿ l21j�a�

q �
1ÿ l21j�a� � 2a2

3r2

�
� 2a3

3r2

�

wm � 3

4a3

X3
j�1

sjkmj�Pzdj �Qlj �
�
�2a2 � 2z2j ÿ r2�sinÿ1

�
l1j�a�
r

�

� 3l21j�a� ÿ 2a2

a

���������������������
l22j�a� ÿ a2

q �

s1 � 6

a3

X3
j�1
�mj ÿ c66��Pzdj �Qlj �

�
zjsinÿ1

�
l1j�a�
r

�
ÿ

���������������������
a2 ÿ l21j�a�

q �

s2 � ÿ2c66
a3

ei2y

r2

X3
j�1
�Pzdj �Qlj �

�
2a3 ÿ

h
l21j�a� � 2a2

i ���������������������
a2 ÿ l21j�a�

q �

szm � 3

a3

X3
j�1

omj�Pzdj �Qlj �
�
zjsinÿ1

�
l1j�a�
r

�
ÿ

���������������������
a2 ÿ l21j�a�

q �

tzm � 3

2a3
reiy

X3
j�1

sjomj�Pzdj �Qlj �

8<:ÿ sinÿ1
�
l1j�a�
r

�
�

a
���������������������
l 22j�a� ÿ a2

q
l22j�a�

9=; �63�

When the spheres are also subjected to tangential loading causing them to slide over each other, it is
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assumed that the sliding friction could be determined by the Coulomb friction law. Using the same
method, the elastic and electric ®elds for sliding friction are obtained in Appendix A.

5.2. Numerical results

Suppose only the force Pz acts on a sphere (Q = 0) in contact with a half-space. Based on Eq. (63),
the stresses in the half-space of PZT-4 ceramic are shown on the right side of Fig. 3 and Fig. 4.
Meanwhile, based on the equations in Hanson (1992a), the stresses in the transversely isotropic half-
space, which is assumed to have the same elastic constants as those of PZT-4, are shown on the left side
of Fig. 3 and Fig. 4 for comparison. In addition, the electric potential and electric displacement are also
shown on the right side of Fig. 3 and Fig. 4. The symbols in the ®gures are de®ned as

~sz � sz
pm

, ~sr � sr
pm

, ~sy � sy
pm

, ~t1 � t1
pm

, pm � Pz

pa2

~F � F
Pz
� 102, ~Dr � Dr

Pz
� 1010, ~Dz � Dz

Pz
� 1010 �64�

where t1=(smaxÿsmin)/2 is the maximum shear stress at a point.
From the ®gures above, we can see

1. The greatest value of principal stress occurs at the center of the contact circle. Most points within the
contact wide are under compression in three orthogonal directions.

Fig. 3. Elastic and electric ®elds on surface.
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2. For transversely isotropic media, the greatest value of the maximum shear stress is t1=0.4247pm and
occurs on the axis of symmetry at the depth z=0.52a. The value of the maximum shear stress on the
circle r=a on the surface is t1=0.1238pm. For piezoelectric media, the greatest value of the maximum
shear stress is t1=0.4467pm and also occurs on the axis of symmetry at the depth z = 0.52a. The
value of the maximum shear stress on the circle r=a on the surface is t1=0.1894pm. Therefore, the
cracks often occur on the axis of symmetry at the depth z = 0.52a for either piezoelectric or non-
piezoelectric transversely isotropic media. In addition, t1=0 on the axis of symmetry at the depth z
=0.02a.

3. The greatest electric displacement Dz on the axis of symmetry occurs at the depth z = 0.48a. The
electric displacement Dr on the surface rises linearly inside the contact circle, reaches the peak value
on the contact circle r=a and drops quickly outside the circle.

In addition, it should be noted that Dz=0 on the surface and Dr=0 on the axis of symmetry.

6. The elastic and electric ®elds for a smooth conical indentor on a transversely isotropic piezoelectric half-
space under forces and charges

The problem under consideration is a cone-shaped indentor with vertex angle f0 pressed by a force Pz

into a transversely isotropic piezoelectric half-space with planes of isotropy parallel to its surface.
Meanwhile, a pair of charges +Q and ÿQ locate at two points on the axis of symmetry and in the
indentor and half-space, respectively. The force and charges are all distant from the contact region.

Fig. 4. Elastic and electric ®elds on axis of symmetry.
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Suppose the surface of half-space coincides with the plane of isotropy, we can now solve the elastic and
electric ®elds in the half-space.

6.1. Analytic solution

The contact stress and electric displacement inside the contact region are assumed as

sz�r,y� � ÿ Pz

pa2
coshÿ1

�
a

r

�
,Dz�r,y� � Q

pa2
coshÿ1

�
a

r

�
,0RrRa �65�

where a is the undetermined contact radius.
Substituting P0 � ÿsz�r0,y0�r0dr0dy0 and Q0 � Dz�r0,y0�r0dr0dy0 into Eq. (28) and integrating the

result over 0R r0 R a, 0R y0 R 2p, the displacement functions become

c0�r,y,z� � 0

cj�r,y,z� �
Pzdj �Qlj

pa2
S�r,y,zj �, � j � 1,2,3� �66�

where

S�r,y,zj � �
�2p
0

�a
0

coshÿ1
�
a

r0

�
lnR�j r0dr0dy0 �67�

The integral has been evaluated by Hanson (1992b) with the result

S�r,y,zj � � 2p

(
azjsinÿ1

�
l1j�a�
r

�
� 1

4
�2a2 � r2 ÿ 2z2j �ln

�
l2j�a� �

��������������������
l22j�a� ÿ r2

q �

�
3zjl2j�a�

h
r2 ÿ 2l21j�a�

i
4r

��������������������
r2 ÿ l 21j�a�

q ÿ
3zj

��������������
r2 � z2j

q
4

ÿ 1

4

�
r2 ÿ 2z2j

�
ln

�
zj �

��������������
z2j � r2

q �9>=>; �68�

Fig. 5. Geometry of concial indentation.
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We obtain the elastic and electric ®elds by substituting Eq. (66) into Eq. (3).
From Fig. 5, the normal displacement in the contact region can be written as

w � b� e
�
1ÿ r

a

�
, �0RrRa� �69�

where e and f0 are related by e=acotf0. The normal displacement in the contact region (z= 0, r R a )
can also be expressed in the following form by using the elastic ®eld obtained.

w � 2H

a2

�
p
2
aÿ r

�
� 2H

a

�
p
2
ÿ 1

�
� 2H

a

�
1ÿ r

a

�
�70�

where

H �
X3
j�1

sjk1j�Pzdj �Qlj � �71�

Comparison of Eq. (69) and Eq. (70) yields

e � 2H

a
, b � e

�
p
2
ÿ 1

�
�72�

If the force Pz and charges Q are speci®ed, the contact parameters can be obtained as

a �
������������������
2Htanf0

p
, e �

������������������
2Hcotf0

p
, b � e

�
p
2
ÿ 1

�
�73�

When the conical indentor slides on the surface of half-space, it is assumed that the sliding friction
could be determined by Coulomb friction law, and the elastic and electric ®elds for sliding friction are
derived in Appendix B.

6.2. Numerical results

Suppose only force Pz acts on a conical indentor (Q=0) contacting with a half-space. The stresses in
the half-space of PZT-4 ceramic are shown on the right side of Fig. 6 and Fig. 7. Meanwhile, based on
the equations in Hanson (1992b), the stresses in the transversely isotropic half-space, which is assumed
to have the same elastic constants as those of PZT-4, are shown on the left side of Fig. 6 and Fig. 7 for
comparison. In addition, the electric potential and electric displacement are also shown on the right side
of Fig. 6 and Fig. 7. The symbols in the ®gures are de®ned in Eq. (64)

From the ®gures above, we can see

1. The principal stresses sr, sy and sz are singular at the origin O. Most points within the contact wide
are under compression in three orthogonal directions.

2. For transversely isotropic media, the greatest value of the maximum shear stress occurs near the
origin o. The value of the maximum shear stress on the axis of symmetry is t1=0.8901pm at the depth
z = 0.02a, which is much bigger than the t1=0.1238pm on the contact circle r=a. For piezoelectric
media, the greatest value of the maximum shear stress on the axis of symmetry is t1=0.7889pm at the
depth z=0.1a, which is bigger than the t1=0.1894pm on the contact circle r=a.

3. The greatest electric displacement Dz on the axis of symmetry occurs near the origin O. The electric
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Fig. 6. Elastic and electric ®elds in surface.

Fig. 7. Elastic and electric ®elds on axis of symmetry.
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displacement Dr on the surface is a constant value inside the contact circle r=a and drops rapidly
outside the circle.

As for spherical contact, Dz=0 on the surface and Dr=0 on the axis of symmetry.

7. The elastic and electric ®elds for a smooth upright circular ¯at punch on a transversely isotropic
piezoelectric half-space under forces and charges

The problem under consideration is of a circular ¯at punch with radius a pressed into a transversely
isotropic piezoelectric half-space by force Pz. Meanwhile, a pair of charges +Q and ÿQ located at two
points on the axis of symmetry and in the punch and half-space, respectively. The force and charges are
all distant from the contact region. Suppose the surface of half-space coincides with the plane of
isotropy, we can now solve the elastic and electric ®elds in the half-space.

7.1. Analytic solution

The contact stress and electric displacement inside the contact region are assumed as

sz�r,y� � ÿ Pz

2pa
�a2 ÿ r2�ÿ1=2, Dz�r,y� � Q

2pa
�a2 ÿ r2�ÿ1=2, 0RrRa �74�

Substituting P0=ÿsz(r0,y0)r0dr0dy0 and Q0=Dz(r0,y0)r0dr0dy0 into Eq. (28) and integrating the result
over 0R r0 R a, 0R y0 R 2p, the displacement functions become

c0�r,y,z� � 0

cj�r,y,z� �
Pzdj �Qlj

2pa
Y�r,y,zj �, � j � 1,2,3� �75�

where

Y�r,y,zj � �
�2p
0

�a
0

�a2 ÿ r20�ÿ1=2lnR�j r0dr0dy0 �76�

The integral has been evaluated by Fabrikant (1988) with the result

Y�r,y,zj � � 2p

(
zjsinÿ1

�
l1j�a�
r

�
ÿ

���������������������
a2 ÿ l21j�a�

q
� aln

�
l2j�a� �

��������������������
l22j�a� ÿ r2

q �)
�77�

We obtain the elastic and electric ®elds by substituting Eq. (75) into Eq. (3).
When upright circular ¯at punch slides on the surface of half-space, it is assumed that the sliding

friction could be determined by Coulomb friction law, and the elastic and electric ®elds for sliding
friction are derived in Appendix C.

7.2. Numerical results

Suppose only force Pz acts on a circular ¯at punch (Q=0) contacting with half-space. The stresses in
the half-space of PZT-4 ceramic are shown on the right side of Fig. 8 and Fig. 9. Meanwhile, based on
the equations in Fabrikant (1988), the stresses in the transversely isotropic half-space, which is assumed
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Fig. 8. Elastic and electric ®elds on surface.

Fig. 9. Elastic and electric ®elds on axis of symmetry.
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to have the same elastic constants as those of PZT-4, are shown on the left side of Fig. 8 and Fig. 9 for
comparison. In addition, the electric potential and electric displacement are also shown on the right side
of Fig. 8 and Fig. 9. The symbols in the ®gures are de®ned in Eq. (64).

From the ®gures above, we can see

1. The principal stresses sr, sy and sz are singular on the contact circle r=a, and the points inside the
contact circle are all under compression in three orthogonal directions.

2. For transversely isotropic media, the greatest value of the maximum shear stress occurs near the
contact circle r=a, with the t1=0.2078pm on the surface circle r = 0.98a. The greatest value of the
maximum shear stress on the axis of symmetry is t1=0.2002pm at the depth z = 0.96a. For
piezoelectric media, the greatest value of the maximum shear stress also occurs near the contact circle
r=a, with the t1=0.3180pm on the surface circle r=0.98a. The greatest value of the maximum shear
stress on the axis of symmetry is t1=0.2143pm at the depth z= 0.92a. In addition, t1=0 on the axis
of symmetry at the depth z=0.1a.

3. The greatest electric displacement Dz on the axis of symmetry occurs at the depth z = 0.84a. The
electric displacement Dr on the surface is zero inside the contact circle and singular on the contact
circle, and then it drops rapidly outside the circle.

As for spherical contact, Dz=0 on the surface and Dr=0 on the axis of symmetry.
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Appendix A. The elastic and electric ®elds for sliding friction between a piezoelectric sphere and another
sphere

According to the Coulomb friction law, the sliding friction in the contact region is taken as a
coe�cient of friction multiplied by the contact pressure. Using fx and fy as the coe�cients of friction in
the x and y directions, the complex shear force P=Px+iPy in the displacement functions of Eq. (28) is
replaced by

P � 3Pzf

2pa3

��������������
a2 ÿ r20

q
r0dr0dy0,f � fx � ify �A1�

and the result is integrated over 0R r0 R a, 0R y0 R 2p. The displacement functions become

c0�r,y,z� � i
3PzG0

2pa3
� f �Dÿ �fD��z0P�r,y,z0� ÿ O�r,y,z0��

cj�r,y,z� �
3PzGj

2pa3
� f �D� �fD��zjP�r,y,zj � ÿ O�r,y,zj �� �A2�

where P(r,y,zj ) is given in Eq. (61), and O(r,y,zj ) is
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O�r,y,zj � �
�2p
0

�a
0

��������������
a2 ÿ r20

q
Rjr0dr0dy0 �A3�

The integral has been evaluated by Hanson (1992a) with the result

O�r,y,zj � � p
32

( �
8
�
a2 � z2j

�2
�8a2r2 ÿ r4 ÿ 8r2z2j

�
sinÿ1

�
l1j�a�
r

�
�
h
2a2

�
4a2 � r2 ÿ 4z2j

�

� l21j�a�
�
6a2 ÿ r2 � 14z2j

�i zj���������������������
a2 ÿ l21j�a�

q )
�A4�

Substituting Eq. (A2) into Eq. (3), we obtain the elastic and electric ®elds as follows:

U � 3Pz

2a3

X3
j�1

Gj

"
f

(�
1

2
r2 ÿ a2 ÿ z2j

�
sinÿ1

�
l1j�a�
r

�
� 2a2 ÿ 3l21j�a�

2l1j�a�
��������������������
r2 ÿ l21j�a�

q )

� �fei2y

(
ÿ 4a3zj

3r2
� 1

4
r2sinÿ1

�
l1j�a�
r

�
�
�
8a4 � a2r2 ÿ l21j�a� �

�
z2j �

5

2
r2 � 5a2

�� ��������������������
r2 ÿ l21j�a�

q
6r2l1j�a�

9=;
375

ÿ3PzG0

2a3

"
f

(�
1

2
r2 ÿ a2 ÿ z20

�
sinÿ1

�
l10�a�
r

�
� 2a2 ÿ 3l 210�a�

2l10�a�
���������������������
r2 ÿ l210�a�

q )

ÿ �fei2y

8<:ÿ 4a3z0
3r2
� 1

4
r2sinÿ1

�
l10�a�
r

�
�
�
8a4 � a2r2 ÿ l210�a� �

�
z20 �

5

2
r2 � 5a2

�� ���������������������
r2 ÿ l 210�a�

q
6r2l10�a�

9=;
375

wm � 3Pz

2a3
� �feiy � feÿiy�r

X3
i�1

sjkmjGj

(
ÿ zjsinÿ1

�
l1j�a�
r

�
�

���������������������
a2 ÿ l21j�a�

q �
1ÿ l 21j�a� � 2a2

3r2

�
� 2a3

3r2

)

s1 � 3Pz

a3
� �feiy � feÿiy�r

X3
j�1
�mj ÿ c66�Gj

�
ÿ sinÿ1

�
l1j�a�
r

�
�

��������������������
r2 ÿ l21j�a�

q l1j�a�
r2

�

s2 � 6c66Pz

a3

X3
j�1

Gj

�
feiy
�
1

2
rsinÿ1

�
l1j�a�
r

�
ÿ l1j�a�

2r

��������������������
r2 ÿ l21j�a�

q �

ÿ �fei3y

(
4

�h
l21j�a� � 2a2

i ���������������������
a2 ÿ l21j�a�

q
ÿ 2a3

�
zj
3r3
� l 31j�a�

r3

��������������������
r2 ÿ l 21j�a�

q )#
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ÿ6c66PzG0

a3

�
feiy
�
1

2
rsinÿ1

�
l10�a�
r

�
ÿ l10�a�

2r

���������������������
r2 ÿ l210�a�

q �

� �fei3y

(
4

��
l210�a� � 2a2

� �����������������������
a2 ÿ l210��a�

q
ÿ 2a3

�
z0
3r3
� l310�a�

r3

���������������������
r2 ÿ l 210�a�

q )#

szm � 3Pz

2a3
� �feiy � feÿiy�r

X3
j�1

Gjomj

�
ÿ sinÿ1

�
l1j�a�
r

�
� l1j�a�

r2

��������������������
r2 ÿ l21j�a�

q �

tzm � 3Pz

a3

X3
j�1

sjomjGj

�
f

�
ÿ zjsinÿ1

�
l1j�a�
r

�
�

���������������������
a2 ÿ l21j�a�

q �

ÿ �fei2y
2a3 ÿ

h
2a2 � l21j�a�

i ���������������������
a2 ÿ l21j�a�

q
3r2

#

ÿ3rms0G0Pz

a3

�
f

�
ÿ z0sinÿ1

�
l10�a�
r

�
�

����������������������
a2 ÿ l210�a�

q �

� �fei2y
2a3 ÿ �2a2 � l210�a�

� ����������������������
a2 ÿ l210�a�

q
3r2

#
�A5�

We want to note that the above solution for shear loading are approximate since the tangential
displacement will not generally align with the shear traction. The tangential traction will also produce a
normal displacement in the contact region thus altering the contact pressure. To consider these details
further, the surface displacement in the contact region will be examined.

From Eq. (A5), we can get

U � 3pPzf

4a3
a

�
a2 ÿ r2

2

�
� 3Pz

�f

2a3
bei2y

��
p
8
� a2

�
r2 � 8a4

�

w � Pz

a3
g� �feiy � feÿiy�a

3 ÿ �a2 ÿ r2�3=2
r

, rRa �A6�

where

a � G0 ÿ
X3
j�1

Gj, b �
X3
j�0

Gj, g �
X3
j�1

sjk1jGj �A7�

It is apparent in this case that the tangential displacements do not align with the shear traction. This
results from the coupling of the second term in the ®rst equation of Eq. (A6). In the special case b=0
the coupling vanishes and the displacements and traction align. The normal displacement is also
nonzero except when g=0. So only when b=0 and g=0 are satis®ed simultaneously, the solution
derived here for sliding sphere is an exact solution.
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Appendix B. The elastic and electric ®elds for sliding friction of a conical indentor on a transversely
isotropic piezoelectric half-space

According to the Coulomb friction law, the complex shear force P=Px+iPy in the displacement
functions of Eq. (28) is replaced by

P � Pzf

pa2
coshÿ1

�
a

r0

�
r0dr0dy0y , f � fx � ify �B1�

and the result is integrated over 0R r0 R a, 0R y0 R 2p. The displacement functions become

c0�r,y,z� � i
PzG0

pa2
� f �Dÿ �fD��z0S�r,y,z0� ÿ G�r,y,z0��

cj�r,y,z� �
PzGj

pa2
� f �D� �fD��zjS�r,y,zj � ÿ G�r,y,zj �� �B2�

where S(r,y,zj ) is given in Eq. (68), and G(r,y,zj ) is

G�r,y,zj � �
�2p
0

�a
0

coshÿ1
�
a

r0

�
Rjr0dr0dy0 �B3�

The integral has been evaluated by Hanson (1992b) with the result

G�r,y,zj � � 2p

(
a

12

�
2a2 � 6z2j � 3r2

�
sinÿ1

�
11j�a�
r

�
� 1

3
z3j ln

�
zj �

��������������
z2j � r2

q �

ÿ1
3
z3j ln

�
l2j�a� �

��������������������
l22j�a� ÿ r2

q �
ÿ 1

9

�
4z2j � r2

� ��������������
z2j � r2

q

� 1

36

h
21l21j�a� � 16l22j�a� ÿ 12r2 ÿ 10a2

i ���������������������
l22j�a� ÿ a2

q �
�B4�

We obtain the elastic and electric ®elds by substituting Eq. (B2) into Eq. (3).
The elastic and electric ®elds obtained are approximate for the same reasons as in Appendix A. We

consider these details further by examining the surface displacement as follows:

U � 2Pzf

a2
a
�
pa
2
ÿ r

�
� 2Pz

�f

3a2
brei2y

w � Pz

a2
g� �feiy � feÿiy�

"
rln

a�
��������������
a2 ÿ r2
p

r
� a

ÿ
aÿ

��������������
a2 ÿ r2
p �
r

#
, rRa �B5�

where a, b and g are de®ned in Eq. (A7).
It is apparent in this case that the tangential displacements do not align with the shear traction. This

results from the coupling of the second term in the ®rst equation of Eq. (B5). In the special case b=0
the coupling vanishes and the displacements and traction align. The normal displacement is maximum
near the edge of contact at r= 0.827a and vanishes at the center r = 0. It is also nonzero except when
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g=0. So the solution derived here for sliding conical indentor is an exact solution only for materials
with b=0 and g=0, just like the solution for the sliding sphere.

Appendix C. The elastic and electric ®elds for sliding friction of an upright circular ¯at punch on a
transversely isotropic piezoelectric half-space

According to the Coulomb friction law, the complex shear force P=Px+iPy in the displacement
functions of Eq. (28) is replaced by

P � Pzf

2pa

ÿ
a2 ÿ r20

�1=2
r0dr0dy0, f � fx � ify �C1�

and the result is integrated over 0R r0 R a, 0R y0 R 2p. The displacement functions become

c0�r,y,z� � i
PzG0

2pa
� f �Dÿ �fD��z0Y�r,y,z0� ÿY�r,y,z0��

cj�r,y,z� �
PzGj

2pa
� f �D� �fD��zjY�r,y,zj � ÿY�r,y,zj �� �C2�

where Y(r,y,zj ) is given in Eq. (77), and Y(r,y,zj ) is

Y�r,y,zj � �
�2p
0

�a
0

ÿ
a2 ÿ r20

�ÿ1=2
Rjr0dr0dy0 �C3�

The integral has been evaluated by Hanson (1994) with the result

Y�r,y,zj � � p
2

��
2a2 � 2z2j � r2

�
sinÿ1

�
l1j�a�
r

�
� 1

a

h
2a2 � l21j�a�

i ���������������������
l22j�a� ÿ a2

q �
�C4�

We obtain the elastic and electric ®elds by substituting Eq. (C2) into Eq. (3).
Similarly, we further examine the surface displacement in the contact region as follows:

U � pPzf

2a
a,w � Pz

a2
g� �feiy � feÿiy�

�
aÿ

��������������
a2 ÿ r2
p

r

�
, rRa �C5�

where a and g are de®ned in Eq. (A7).
From the ®rst equation of Eq. (C5) it is apparent that f is the only complex quantity on the right

hand side and therefore one can write U=u+iv=C( fx+ify ) where C is a real constant. In this case the
tangential displacement does align with the direction of shear traction and the solution is exact. The
second equation of Eq. (C5) reveals that the normal displacement in the contact region is nonzero and
this will alter the contact pressure. It has a maximum value at r=a and vanishes at r= 0.In the special
case of g=0 the normal displacement vanishes everywhere on the surface and there is no interaction. It
may now be concluded that the solution derived here for a sliding upright punch is an exact solution for
materials with g=0. For g$0 the shear stress and tangential displacement are still in alignment but the
solution is not exact since the shear loading will alter the contact pressure.
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